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1 ABSTRACT

The combined-load (compression and shear) buckling equations were established for orthotropic sandwich pan-
els by using the Rayleigh-Ritz method to minimize the panel total potential energy. The resulting combined-load
buckling equations were used to generate buckling interaction curves for super-plastically-formed/ diffusion-bonded
titanium truss-core sandwich panels and titanium honeycomb-core sandwich panels having the same specific weight.
The relative combined-load buckling strengths of these two types of sandwich panels are compared with consider-
ation of their sandwich core orientations. For square and nearly square panels of both types, the combined load
always induces symmetric buckling. As the panel aspect ratios increase, antisymmetric buckling will show up when
the loading is shear-dominated combined loading. The square panel (either type) has the highest combined buckling
strength, but the combined load buckling strength drops sharply as the panel aspect ratio increases. For square pan-
els, the truss-core sandwich panel has higher compression-dominated combined-load buckling strength. However,
for shear dominated loading, the square honeycomb-core sandwich panel has higher shear-dominated combined load
buckling strength.

2 INTRODUCTION

Extensive explorative work has been carried out to find highly efficient (high stiffness, low specific weight)
hot structural panel concepts for application to hypersonic flight vehicles such as the National AeroSpace Plane
(NASP, refs. 1-12). The typical high-efficiency hot structural panels investigated hitherto are tubular and beaded
panels (refs. 1-11) made of René 41, and sandwich panels with different core geometries, fabricated with superalloys
(e.g., titanium, Inconel 617®, René 41). The face sheets of the sandwich panel may be either continous alloy or
metal-matrix composites (e.g., silicon carbide/titanium metal-matrix composites, ref. 12).

During applications (or services), the hot structural panel will be subjected to combined loading induced by
aerodynamic and thermal loadings. Therefore, the critical requirement for those hot structural panels is the high
buckling strength. The buckling behavior of tubular and beaded panels has been studied extensively theoretically
and experimentally (refs. 9-11). References 13 and 14 report some results of the compressive buckling behavior of
truss-core and honeycomb-core sandwich panels.

Because these two types of sandwich panels could be good candidates for applications to the NASP, itis important
to understand the relative structural performances of those two panels under the combined loadings. This report
compares the buckling strengths of the truss-core and honeycomb-core sandwich panels of identical specific weight
subjected to combined compressive and shear loadings.

3 NOMENCLATURE

Amn Fourier coefficient of trial function for w, in

a length of sandwich panel, in

a7 coefficients of characteristic equations

Boun Fourier coefficient of trial function for ~y,, rad

b horizontal projected length of corrugation leg excluding the flat segments, in
Cmn Fourier coefficient of trial function for ~,, rad

c width of sandwich panel, in

®rnconel is a registered trademark of Huntington Alloy Products Division, International Nickel Company, Huntington, WV.
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flexural stiffness parameter, 1/ D, Dy, in-1b

transverse shear stiffnesses in planes parallel and normal to the corrugation
axis (z-axis), Ib/in-rad

longitudinal and transverse panel flexural stiffnesses, in-1b

panel flexural stiffnesses, in-Ib

panel twisting stiffness, in-1b

nondimensional parameters that are functions of truss-core geometric parameters
one half the length of straight diagonal segment of corrugation leg, in

Young’s modulus of sandwich core material, 1b/in?

effective Young’s modulii of honeycomb core, 1b/in®

Young’s modulii of face sheets, 1b/in?

length of flat horizontal region of corrugation leg, in

shear modulus of sandwich core material, Ib/in®

effective shear modulii of honeycomb core, 1b/in?

shear modulus of face sheets, 1b/in?

depth of sandwich panel = distance between middle planes of two face sheets, in

depth of corrugation = vertical distance between center lines of upper and lower
flat segments of corrugation leg, he = h — t5 — ty,in

depth of honeycomb core, h. = h - t,, in

moment of inertia, per unit width, of truss-core sheet of thickness
te, L= gytc, in*/in

moment of inertia, per unit width, of truss-core cross section taken with respect to the

horizontal centroidal axis of the corrugation cross section, in*/in

moment of inertia, per unit width, of corrugation leg flat region of thickness ¢ fr
Iy = {5t/ in/in

moment of inertia, per unit width, of two face sheets, taken with respect to horizontal

centroidal axis (neutral axis) of the sandwich panel, I, = %—tsh2+%ts3 ,in*/in
index, 1,2,3, ...
index, 1,2,3, ...

2
compressive buckling load factor, k, = J;VZ%;

2
shear buckling load factor, &, = %-"%

length of corrugation leg, in
bending moment intensities, in-1b/in

twisting moment intensities, in-1b/in




m number of buckle half waves in z-direction

Nz, Ny normal stress resultants, 1b/in

Ngy shear stress resultant, 1b/in

n number of buckle half waves in y-direction

D one half of corrugation pitch = half wave length of corrugation, in

Q2 Qy transverse shear force intensities, 1b/in

R radius of circular arc regions of corrugation leg, in

Rs compressive stress ratio, R, = % (pure cécrznpression)

Rzy shear stress ratio, Rgy = Wﬁf—r’éﬂm

S transverse shear stiffness parameter

te thickness of straight diagonal segment, or circular arc regions of corrugation
leg, t. = tf%%%, in

173 thickness of corrugation leg horizontal flat segments, in

ts thickness of sandwich face sheets, in

14 total potential energy of sandwich panel, in-1b

Vi strain energy of the sandwich panel, in-1b

V2 work done by external loads, in-1b

w panel deflection, in

T,9,2 rectangular Cartesian coordinates

Yzs Yy thickness shear strains, rad

Srnnij special delta function obeying m # i, n# J, y
m £ = 0dd, nak ] = 0dd: Gmns = g7 (T3S

0 corrugation angle, rad

Ve Poisson ratio of sandwich core material

Vezys Veyzs Vexz Poisson ratios of honeycomb core

Vzy» Vyz Poisson ratios of face sheets, also for sandwich panel
Prc specific weight of honeycomb core, 1b/in*
Pri specific weight of titanium material, 1b/in3

4 HOT STRUCTURAL PANELS

Figures 1 and 2 show titanium truss-core and honeycomb-core sandwich panels, respectively. The truss-core
sandwich panel may be fabricated by a superplastical-forming/diffusion-bonding process. The honeycomb-core
sandwich panel can be fabricated by an enhanced-diffusion bonding process which joins the two face sheets to the

3




honeycomb core (ref. 12). To compare the buckling strength, both types of the sandwich panels have the same face
sheet thickness and same core depth. The thickness of the truss is adjusted so that the two types of panels will have
identical specific weight. The sandwich panels will be subjected to combined compressive and shear loadings as

shown in figure 3. For each type of panel, two cases of core orientations will be investigated. Namely, truss-core
orientation,

case 1 = corrugation axis parallel to N, and
case 2 = corrugation axis perpendicular to N, ;

honeycomb-core orientation,
case 1 = hexagon longitudinal axis parallel to N, and
case 2 = hexagon longitudinal axis perpendicular to N,.

Figure 2. Honeycomb-core sandwich panel.
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Figure 3. Truss-core and honeycomb-core sandwich panels of the same specific weight under compression and

shear.

5 BUCKLING ANALYSIS

5.1 Panel Constitutive Equations

The sandwich panel constitutive equations (moment and shear equations, ref. 15) may be expressed as

D, 0 [ow
M = 11— VzyVyz [B_m (Ec- -
_ D, [i (Bw
My = "1 — vy L8y \ Oy
Mgy =
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where M, and M, are the bending moment intensities, My is the twisting moment intensity, Q. and Q are the
intensities of transverse shear resultants (fig. 4), w is the panel deflection, ~y; and y are the transverse shear strains,
Vgy and vy, are the panel Poisson ratios, D, and D, are the flexural stiffnesses, Dy, is the twisting stiffness, and
Dqs and Dg, are the transverse shear stiffnesses. Dy, Dy, Dy, Dqs., and Dgy are defined in the appendix.
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Figure 4. Forces and moments acting on a differential element of a sandwich panel.

5.2 Panel Boundary Conditions

The sandwich panels will be assumed to be simply supported at four edges. Namely
w=My;=7=0 along z=0,a (6)
w=My=7,=0 along z=0,c N

5.3 Energy Equations

The strain energy V; produced by the moments M. z» My, My (= My;), and the transverse shear forces Q, and
Qy (fig. 4) may be written as (ref. 15)
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and the strain energy V, produced by the external loads Nz, Ny, Ny, and g can be expressed as (ref. 15)

1 o pe dw\? dw\? ow Ow
== - & s gwow 9
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Then, the total potential energy V of the sandwich system is given

V=Wi+1; (10)




For the present problem, ¢ = Ny = 0, and N; — —N5.

5.4 Rayleigh-Ritz Method

Because of the existence of the shear loading term Ny %% %15 appearing in equation (9), the Rayleigh-Ritz method
will be used to minimize the total potential energy V' of the sandwich system to obtain the buckling equation for

combined loading.

To satisfy the simply-supported boundary conditions equations (6) and (7), the following trial functions for the
panel deflection w and the transverse shear strains -y, and -y, may be chosen (ref. 16)

[o < e <]

.
w= E ZAW, sin mrz sin Y (11)

m=1 n=1 a ¢
o0 o0

Y=Y, Bmncos 7T Gin 2TV (12)
m=1n=1 a ¢
22 = mnr __ nny

Y=Y Y Crpnsin — cos — (13)
m=1n=1 a ¢

where Amn, Bmn, and Cp,y, are the undetermined Fourier coefficients of the assumed trial functions for w, 7, and
nyy tespectively, and m and n are the buckle half wave numbers in the z and y direction. Substitution of equa-
tions (11) through (13) into equations (8) and (9) and then substitution of the resulting expressions of V; and V; into
equation (10), and applying the Rayleigh principle of minimizing V

v . 8V _ VvV _
0Amn 0Bmn O0Cmn

one obtains three simultaneous characteristic equations for the determination of the combined buckling loads.

av_ _
Form—()

0 (14)

11 m? 7t T kzy o o 12 13
Qo — kx_aj{‘_ Amn + 32 W E Z SmﬂijAt'j + amann + am-n,cm'n =0 (15)
i=1 j=1
v _
For 9B = 0
02 Amn + a2 Bmn + 023,Cmn = 0 (16)
av_ _
For m =0
a’?;nAm’h + a::nanmn + a?r?nCmn = O (17)

In equation (15), the buckling load factors k, and k,, are respectively defined as

Nga? Nza?
z = 'II'ZID* , kzy = w2 D* (18)
where the flexural stiffness parameter D* is defined as
D* = _____VE’Eﬂ I, (19)
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In addition, the special delta function 8mnij appearing in equation (15) is defined as

mnij
m? —i2) (2 — J7)

Smnij = (

which obeys the conditions: m ¥ i, n# i, m 4 i = odd, n+ j = odd.

20)

The coefficients o¥, (3,7 = 1, 2, 3) appearing in equations (15) through (17) are defined as follows

4 : 2 2 4
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a : a c c
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Solving for By,,, and C,,,, in terms of A,,, from equations (16) and (17), one obtains

23 31 21 .33
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(26)

@7

28)

29

Substitution of equations (28) and (29) into equation (15) yields a homogenous linear equation containing only

the panel deflection coefficient A,,,

an o —- 30
'_k"_Amn + EZ Smniinj =0 (30)
2 i=1 j=1
where m #.4,n# j, m 44 =0dd, n+ i = 0odd, and
2 2 12 23 31 21 .33 13 21 .32 22 31
M. = E k (mﬂ> a all + amn(amna’mn — a’mnamn) + amn(am'namn - amnamn)} }
mn = z ) mn 22 .33 23 32
32 a e D* } Qi — Qo @0, |
|

classical thin transverse sheer effect terms

plate theory term ( 3D




Equation (30) forms a system of an infinite number of simultaneous equations associated with different values of
m and n. For practical purposes, the number of these simultaneous equations may be cut off up to certain finite num-
bers if the convergency of the eigenvalue solutions reached the desired limit. Since m + n=o0dd and n+ j = odd
is required in equation (20), we have (m % 1) £ (n4j) = (m +n) £ (i) =even. Thus, if m + n=even, then
(7 4 j) must also be even. Likewise, if m + n=o0dd, then (7 4 j) must also be odd. Therefore, there is no cou-
pling between even case and odd case in each equation written out from equation (30) for a particular set of {m,n}.
Namely, if the A, term in equation (30) is for m + n = even (or odd), then the A;; term in the same equation must
be for (4 £ j) = even (or odd) also. Thus, the simultaneous equations generated from equation (30) may be divided
into two groups which are independent of each other; one group in which m + nis even (i.e., symmetrical buckling),
and the other in which m + nis odd (i.e., antisymmetrical buckling, refs. 17, 18). For the deflection coefficients Apy
to have nontrivial solutions for given values of k. and £, the determinant of the coefficients of the unknown A,
must vanish. The largest eigenvalue lev thus obtained will give the lowest buckling load factor k., as a function of

k. and %. Thus, a family of buckling interaction curves in the k;—k, space may be generated with -(Ci as a parameter.
Representative characteristic equations (buckling equations) for 12 x 12 matrices written out from equation (30)
are shown respectively in equations (32) and (33) for the cases m 4+ n=even and m £ n=o0dd (refs. 17, 18).

m + n=even

Au A An  An Ais Au  Ax An Asi Axs Au Ass
My 4 8 8 16
m=1,n=1 Fzy 0 9 0 0 33 0 33 0 0 2 0
Mys 4 8 R 16
m=1,7=3 e -5 0 0 5 0 —5% 0 0 3 0
My 4 20 0 36 0 20 4 0 4
m=2,n=2 Fzy 3 ~& 25 ~63 7 7
M3 8 8 16
m=3,n=1 Fay 0 —3% 0 7 0 0 3 0
Mis 40 8 16
m=1,n=5 "kﬁ' - 'ﬁ 0 -& 0 0 -37 0
2 My 2 8 8 120
m=2,n=4 ks 35 0 & 3 0 14
=0
=3 n= My 73 144
m=3,n=3 Symmetry % T35 0 0 75 0
4= My 40 120 g
m=4,m=2 ky T2 147 0 3
= = M. .1_6.
m=5,n=1 —il-kzy 0 —5 0
=3,m= Mys 80
m=3,m=5 k., T2 0
=4 n=4 Mgy 80
m=4,n= kzy 21
m=5,n=3 Ms3
Kay
(32)
where the nonzero off-diagonal terms satisfy the conditions: m # ¢, n# j,m £+ i = odd and n + j = odd.
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m £+ n=o0dd

m=1,n=2

m=2,m=1

m=1,m=4

m=2 ,n=3

m=3,n=2

m=4 ,n=1

m=1,n=6

m=2,n=5

m=3,n=4

m=4 ,n=3

m=5,n=2

m=6,m=1

A An Al Ax

Mg 4 4
Kzy 9 5
My 8 0
kay 4
Mg 8
kzy -7
My
kzy
Symmetry

A3z

W&

36

Mz

kay

Ass

Azs

20
63

o
27

wjoo e

where the nonzero off-diagonal terms satisfy the conditions: m # i, n# j, m £+ ¢ =0dd and n 4 j = odd.

(33)

Notice that the diagonal terms in the determinants (eq. (32), (33)) come from the first term of equation (30), and
the second series term of equation (30) gives the off-diagonal terms of the determinants.

6 NUMERICAL RESULTS

6.1 Physical Properties of Panels

The titanium truss-core and titanium honeycomb-core sandwich panels analyzed have the following geometrical
and material properties.

10




Geometry:
|
‘ Trusgcore Honeyc.omb-core
Items sandwich panel ~ sandwich panel
a, in 24 24
b=1(p—f),in 0.3294 S
g- 1,2,3,4 1,2,3,4
d= Lo in 0.6589 —
f,in 0 -—
h, in 1.2 1.2
he=h—ts —t5,in 1.1412 -——
h, = h —ts,in - 1.1680
2= f+2(d+ R6),in 1.3177 -—
p= phiz,in 0.6589 —
R,in 0 ———
tc=tycos 6, in 0.0134 -——
tf,in 0.0268 -——
ts, in 0.0320 0.0320
6, deg 60 -
Material propérties

The titanium material used for the sandwich panel face sheets and cores has the following properties
E; = E, = E. = 16 x 10°1b/in®
Gy = Ge = 6.2 x 1081b/in?
Vgy = Vyz = V= 0.31

pr: = 0.16 1b/in®

11
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Figure 5. Corrugatibn leg of a truss core.

The effective elastic constants used for the titanium honeycomb cores are given in the following
For case 1 core orientation

Ec; = 2.7778 x 10*1b/in?
E.y = 2.7778 x 10*1b/in?
E.. = 2.7778 x 10°1b/in?
Gegy = 0.00613 Ib/in?

Geyz = 0.81967 x 10°1b/in?
Gezz = 1.81 x 10°1b/in?
Vezy = 0.658 x 1072

Veyz = 0.643 x 1076

Vezz = 0.643 x 1076

pue = 3.674 x 10~21b/in3

For case 2 core orientation: subscripts z and y are interchanged.

6.2 Convergency of Eigenvalue Solutions

To find the minimum number of simultaneous equations (written out from eq. (30)) required to yield sufficiently
accurate eigenvalue solutions, the order of determinants (eq. (32) and (33)) was gradually increased from order 4

12




until the eigenvalues sufficiently converged. Figure 6, which is the plots of table 1, shows the convergency behavior
of k,, (even and odd) with the increase of the order of matrices for a special case of k; = 0 and £ = 1, for truss-core
sandwich panel of case 1 core orientation.

opp

EVEN

| | 1 ! { 1 1 412.
04 5 = 7 8 9 1o ' ]
ORDER OF DETERMINANT

Figure 6. Convergency of shear buckling solutions with an increase of the order of matrix. k; =0, % =1

Table 1. Convergency of ks, for truss-core sandwich panel of case 1 core orientation.

Order of kzy, kzy,
determinant even odd
6.43 8.19

6.39 6.64

5.79 6.58

10 5.76 6.34

12 572 6.33

The values of k,, (even and odd) have sufficiently converged at order 12. Thus, in the actual calculations of kz
for any given values of k, and £, the order of matrices was set to be 12 (eq. (32) and (33)).

13
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6.3 Buckling Interaction Curves

Figures 7 through 10 show buckling interaction curves for the truss-core and honeycomb-core sandwich pan-
els of the same specific weight and of different core orientations, respectively. Both symmetric and antisymmetric
buckling cases are shown for different aspect ratios of the panels. For the square panels (—g = 1), the antisymmetic
buckling interaction curves (broken curves) lay on the right hand side of the symmetric buckling interaction curves
without intersecting. For % > 2, the symmetric and antisymmetric curves intersect at certain combined loading
points at the shear dominated combined loading region. Figure 11 shows the comparison of the composite buck-
ling interaction curves for the two types of sandwich panels. Those composite buckling interaction curves were
constructed from figures 7 through 10 by combining portions of symmetric and antisymmetric buckling interaction
curves to give minimum combined buckling loads. For square panels (g = 1) (any type), the core orientation has
no effect on the pure compressive and pure shear buckling strength of the panels, and has negligible effect on the
combined-load buckling strength of the panels. When the aspect ratio is increased, the effect of core orientation
becomes conspicuous. For square panels (% = 1), the truss-core sandwich panels (any core orientation) have higher
buckling strength than the honeycomb-core sandwich panels (any core orientation) when the loading is compression
dominated combined loading. When the loading is shear dominated, the latter has the higher buckling strength. For
an aspect ratio greater than 1, the two cases of interaction curves of honeycomb-core sandwich panel practically lay
between the two interaction curves for the truss-core sandwich panel. Figure 12 shows k, plotted as a function of -g—
for the two types of sandwich panels.

14
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———————  ANTISYMMETRIC BUCKLING
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Figure 7. Buckling interaction plots for truss-core sandwich panels of different aspect ratios. N is parallel to the
~ corrugation axis.
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Figure 8. Buckling interaction plots for truss-core sandwich panels of different aspect ratios. N, is perpendicular to
the corrugation axis.
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Figure 9. Buckling interaction plots for honeycomb-core sandwich panels of different aspect ratios. Case 1 core

orientation.
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Figure 10. Buckling interaction plots for honeycomb-core sandwich panels of different aspect ratios. Case 2 core
orientation.
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TRUSS CORE—~ N, //CORRLUGATION AXIS
—_— —— TRUSE CORE—Nyx L CORRUGATION AXIS
— e HONEYCOMB CORE — CASE |

—_————— HOMNEYCOMB CORE — CASE 2
A ANTISYMMIETRIC BUCKLING

= SYMMETRIC BUCIKLING

1 L

o \ 2 3 4
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Figure 11(a). Comparison of buckling strength of truss-core and honeycomb-core sandwich panels having the same
specific weight.

19




20

] ] 1 !
| 2 3 4 5 6
kky
TRUSS CORE~ Ny /CoRRIUGATION AXIS
—————— TRUSS CORE — Nx.L CORRLULGATION AXIS
—_———— HONEYCOMB CORE -~ cASE |
—_———— MOMEVWCOMB COoORE—~ CASI22
A ANTISYMMETRIC BLCKLING
s SYMMETRIC BUC\W<LING
Nix
I I I
- |
o= 4 '
Ny | ) 11

N

EN

p——

Figure 11(b). Concluded.
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Figure 12. Comparison of compressive buckling strength of truss-core and honeycomb-core sandwich panels having
the same specific weight.
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It is seen that the value of k, decreases sharply as the aspect ratio < is increased from £=1w0¢=2.
Beyond g = 2, the rate of decrease of k, with the increase in g becomes less severe. For compressive buckling
strength, the truss-core sandwich panel of case 1 core orientation has a higher value of &, than the honeycomb-core
sandwich panel for all the range of panel aspect ratio g. For case 2 core orientation, the former has a higher value
of k; than the latter only up to % ~ 2.1. Figure 13 shows similar plots for kzy. The rate of decrease of k,, with
the increase in g is less severe as compared with the compressive buckling case (fig. 12). The honeycomb-core
sandwich panel has higher shear buckling strength only in the range of aspect ratio 1 < g < 1.5(case 1 core
orientation) or 1 < % < 1.25(case 2 core orientation). Beyond ac- = 1.5, the truss-core sandwich panel with case 1
core orientation has higher shear buckling strength. Table 2 summarizes the values of k. and k., for different panel

aspects ratios.

3 b
2 ———— TRUSS CORE- Ny /CORRLIGATIOM AXIS
————— TRUSS CORE~— NNy 1l CORRMGATION AXIS
—— - —— HONEYCOME CoRE - caSE |
———r— HOMEBYCOMB CORE — CASE 2
ik A ANTISYMMETRIC BUCKLING
=3 SYMMETRIC BLICKLING
Ko, = Nxz a*
7 ~n-z -Dﬂ
(o] 1 1 i
' 2 “a 3 4

Figure 13. Comparison of shear buckling strength of truss-core and honeycomb-core sandwich panels having the
same specific weight.
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Table 2. Buckling load factors for truss-core and honeycomb-core sandwich panels having same specific weight.

kz kzy (symmetric) kyy (antisymmetric)

Truss-core Honeycomb-core Truss-core Honeycomb-core Truss-core Honeycomb-core

sandwich panel sandwich panel sandwich panel sandwich panel sandwich panel sandwich panel
-& casel  case2 casel case 2 casel case 2 case ]  case2 casel  case2 case 1 case 2
1 34321 34321 3.0529 3.0529 5.7160 5.7160 6.0831 6.0834 6.3284 63284 73575  1.3575
2 15533 1.3450 1.3351  1.2943 5.0279 4.2812 49674 4.6761 49106 4.3001 4.8060  4.5747
3 12724 1.0620 1.1177  1.0788 47186 3.9598 45042 4.2364 47496 39186 45115  4.2163
4 11799 0.5709 1.0495  1.0117 47497  3.8200 4.4070  4.0988 47148  3.8605 44279  4.1417

Figures 14 through 17 show the buckling interaction curves plotted in the stress-ratio spaces for the truss-core
and honeycomb-core sandwich panels of different core orientations, respectively. For the aspect ratios ¢ = 1,2, the
buckling interaction curves for the two types of panels are continuous curves. However, for g = 3, 4, the buckling
interaction curves in figures 14 through 17 are discontinuous composite curves constructed from symmetric and
antisymmetric buckling interaction curves. Those buckling interaction curves in the stress-ratio space for the two
types of sandwich panels may be described by the following mathematical equations shown in table 3.

Table 3. Equations for describing buckling interaction curves in stress-ratio space.

Truss-core Honeycomb-core
sandwich panel sandwich panel
< case 1 case 2 case 1 case 2
1  R;+Ryw~1 R.+ Ry ~ 1 R+ REP® ~ 1 R;+ RL® ~ 1
2.86 29 ) 2.39
2  R.+R:¥ w1 R.+ R.P ~1 R+ R ~ 1 R.+ R} w1
3 Discontinuous curve Discontinuous curve Discontinuous curve Discontinuous curve
4 Discontinuous curve Discontinuous curve Discontinuous curve Discontinuous curve
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Figure 14. Buckling interaction plots in stress ratio space for truss-core sandwich panels of different aspect ratios.

N; is parallel to the corrugation axis.
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Figure 15. Buckling interaction plots in stress ratio space for truss-core sandwich panels of different aspect ratios.
N, is perpendicular to the corrugation axis.
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Figure 16. Buckling interaction plots in stress ratio space for honeycomb-core sandwich panels of different aspect
ratios. Case 1 core orientation.
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Figure 17. Buckling interaction plots in stress ratio space for honeycomb-core sandwich panels of different aspect

ratios. Case 2 core orientation.
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7 CONCLUDING REMARKS

Combined-load buckling analysis was performed on the truss-core and honeycomb-core sandwich panels having
the same specific weight, and the combined-load buckling interaction curves were generated for these two types of
sandwich panels with different panel aspect ratios and different core orientations. The results of the analysis are
summarized in the following

1.

28

The infinite number of simultaneous characteristic equations for calculating the shear buckling load compo-
nents could be cut off at 12 (i.e., order of matrix 12) to yield sufficiently accurate eigenvalue solutions for
shear buckling loads.

- For square sandwich panels of both types, only the symmetric buckling will take place. For a panel aspect ratio

greater than one, both symmetric and antisymmetric bucklings will take place. The antisymmetric buckling
will occur when the combined loading is shear dominated.

. The buckling interaction curves in the stress ratio space for both types of sandwich panels are continuous

curves for low-panel aspect ratios, but become discontinuous composite curves at higher panel aspect ratios.

The square-shaped sandwich panel (any type) has the hi ghest combined-load buckling strength, and the combined-

load buckling strength decreases sharply as the panel aspect ratio is increased.

. For a square sandwich panel (any type) the core orientation has no effect on pure compressive and pure shear

buckling strength, but has negligible effect on the combined-load buckling strength. When the panel aspect
ratio is increased, the effect of core orientation on the combined-load buckling strength becomes conspicuous.

. For square ‘sandwich panels, the truss-core sandwich panels (two core orientations) have higher buckling

strength than the honeycomb-core sandwich panels (two core orientations) when the combined loading is
compression dominated. The reverse is true when the combined loading is shear dominated.

For an aspect ratio greater than one, the two buckling interaction curves of honeycomb-core sandwich panels
of two core orientations practically lay between the two buckling interaction curves of truss-core sandwich
panels of two core orientations.




APPENDIX
FLEXURAL, TWISTING, AND TRANVERSE SHEAR STIFFNESSES

The flexural stiffnesses D, and D,, the twisting stiffness Dy, and the transverse shear stiffnesses Dg; and
Dy of the truss-core and honeycomb-core sandwich panels are written in the following for anisotropic face sheet
material and isotropic core material.

Truss-core sandwich panel, case 1 core orientation

D, = E.I,+ E.I, (A-1)
1+ El
Dy = By, Bl (A-2)
Dy = 2Gayl, (A-3)
_ Gdch? Al
Dg: = = (A-4)
.. Ec [t

_ tc A-5
Dg, = Shy=5 (h> (A-5)

In the above equations, { E;, Ey, Gzy, Vay, Vy: } and {Ec, G, v} are the elastic constants associated, respectively,
with the anisotropic face sheet material and the isotropic truss-core material, h is the depth of the sandwich panel, p
is one half of the corrugation pitch, t, is the thickness of the upper and lower face sheets, t. is the final thickness of
the core sheet after superplastic expansion and is related to the original core sheet thickness ¢ ¢ through (figs. 1, 5)

te= tfg:—; 7=0 tycos 6 (A-6)

where f is the length of corrugation leg horizontal flat segment, 6 is the corrugation angle, and h, in equation (A-5)
is the depth of the corrugation defined as
he=h—(ts+t5) (A-T)

and finally, £ is the length of corrugation leg expressed as

£=f+2(d+ RO (A-8)
where d is one half the length of the corrugation leg diagonal segment, and R is the radius of the circular arc segments
of the corrugation leg (fig. 5).

In equations (A-1) and (A-2), I, is the moment of inertia of the face sheets taken with respect to the centroidal
axis of the sandwich panel, and I, is the moment of inertia of the corrugation leg taken with respect to the corrugation
core centroidal axis (parallel to y axis). The expressions for I, and I, are given in the following

I, = %—t,h2 + -é—ti (A-9)
s Rt Ut 12\ 2 (.., 18
= <<y L — S 4 —< 0
I p {4hctc 1+3h§ +3h2 sin 9+4d2cos
R|6 R R R) .
== — - = —3=1(0 - 0 A-10
+ P [2 w2 sin 8(1 — cos 6) . (2 3 P (0 —sin )}} ( )
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The nondimensional shear stiffness coefficient S appearing in equation (A-5) is defined as (refs. 13, 19)
2
he AFi
6 %07k + (2)

{&0r-2 (£)'0r + & [st (0 — o) + (2)° 7]

S = (A-11)

where the nondimensional parameters D, D, and DY are defined as

2 /d\? 2L 11 /p\3 b3
F_+2[<% 2 iGN I Y (=
or=3(5) oot 3L [8 &) - (%)

R b\? Rb R\? .
+}—l:[2 (-,:) 0—4-,—1?(1—cos0)+(h—c) (0—sm000s0)]

+ Eét_c [2-%sin29+ ;?c(o_sin 6 cos 9)} (A-12)

2 /d\3 1({R, 1fI
H_2 (% s 2 I _J 1
D, =3 (hc) sin 0+2 (hc6+2hc-[f>

R

- (h_c)z [(2 - 3}%) (6 —sin @) + h%sin 6(1 — cos 0)]

L [fte .d , R, .
cht: [Eé— + 2h—ccos 6+ h_c(0+ sin 6 cos 9)} (A-13)

2 (d\? . 1L [1/p\2 [b\?
H_Z (2 — L (&) _ (=
D, _3<hc> smacos0+2If [4 (hc) (hc)

b Rb . R R
{EG—ZE(G—sme)—h—(l—coso) [1 ——h—c(l —cose)}}

Cc

IC d . R 2
- 2—sinfcos § + — 0 A-14
ET ( h sin 6 cos 6 + h sin ) ( )
where b(= %(p — f)) is one half of the horizontal projected length of the nonhorizontal region of the corrugation
leg (fig. 5), and the moments of inertia | s and I of the flat and diagonal regions of the corrugation leg are defined
respectively as

1, 1
Ifzﬁtf , IC:E

In case 2 core orientation, subscripts z and v in equations (A-1) through (A-5) are interchanged.

12 (A-15)

Honeycomb-core sandwich, case 1 core orientation

D, = E,I, (A-16)
Dy = E,I, (A-17)
Dyy = 2Gyy I, (A-18)
Dgz = Gezsh. (A-19)
Dgy = Gop:h!, (A-20)
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where A/, is the honeycomb-core depth (fig. 2) defined as

hl.=h—t,

In case 2 core orientation, subscripts = and y in equations (A-16) through (A-20) are interchanged.

(A-21)
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